

Learning constraint models from data

Dimos Tsouros, Kostas Stergiou , Tias Guns <u>dimos.tsouros@kuleuven.be, kstergiou@uowm.gr , tias.guns@kuleuven.be</u>

KU LEUVEN

Introduction

- Constraint programming (CP)
 - Solving combinatorial problems in AI

A1		B2		D3	c	:3		
B1	C1	D2	A2					
D1			C2		B 3	A3		

Model + Solve paradigm

Introduction

Modelling is not always trivial

Acquisition System

- Requires expertise
- Bottleneck for the wider use of CP

Introduction (4/4)

Passive Acquisition

Assignment to all variables of the problem, labelled as:

a solution

or a non solution

Passive Acquisition

Adapting Candidate Elimination

 $\overline{}$

 C_L: learned set of constraints

- **B**: set of all candidate constraints
- C_T: target set of constraints

Adapting Candidate Elimination

 \mathcal{R}

Adapting Candidate Elimination

Interactive Constraint Acquisition

Membership query

KU LEUVEN

1	1	3	4
3	2	1	1
2	2	3	1
2	3	4	3

Answer: Negative in both of them (a constraint Is violated)

Partial query

1	1	1-1	4
3		1	-
-		-	-
2	-	-	-

Interactive Constraint Acquisition

KU LEUVEN

11

KU LEUVEN

Query generation

Irredundant query

- Not violating any learned constraint
- Violating at least one constraint from B

Quality of query

- Better generated examples lead to faster convergence
- Maximizing violations from B

Convergence

• If no example found

Learning a constraint

- 1. FindScope: exploit partial (sub)queries to find the problematic part of the assignment
 - logarithmic number of queries
 - splitting variables approximately in half
- 2. FindC: Try different assignments to find the specific constraint in the scope

Interactive Constraint Acquisition QuAcq

QuAcq:

- Learning one violated constraint per generated example
- Logarithmic number of queries for each constraint

KU LEUVEN

Interactive Constraint Acquisition Multiple Acquisition

Multiple Acquisition:

- Learn multiple constraints in each loop instance
- Don't generate a new example when a constraint is learnt
 - Instead, get an example in a subset of variables not violating the constraint found

Interactive Constraint Acquisition *Multiple Acquisition*

MultiAcq:

KU LEUVEN

- Learning *all* violated constraints per generated example
- linear number of queries for each constraint

MQuAcq:

- Learning *all* violated constraints per generated example
- Logarithmic number of queries for each constraint
- Using FindScope/FindC repeatedly until no more constraints are found

16

KU LEUVEN

Interactive Constraint Acquisition Multiple Acquisition

MQuAcq-2:

- Learning *multiple (not all)* violated constraints per generated example
- Logarithmic number of queries for each constraint
- Avoids the extensive branching needed by MQuAcq and MultiAcq
- Focus the queries on promising parts
 - detecting quasi cliques

Open challenges

Number of queries

- Number of queries needed to converge is still large.
- Query generation and the acquisition process are highly unguided
- Information from what we have learnt can be used

Application level constraint modelling

- Handling of big sets of candidate constraints
- Alleviating the requirement for a more specific knowledge of the constraints that can be present in the problem

Specific classes of constraints

- Global constraints: Exploding the set of candidate constraints
- Linear inequalities with constants: Need to consider all possible constants -> Exploding the set of candidate constraints

COUNT	$x_1 + 5 < x_2$
ALLDIFFERENT	$ \mathbf{x} + 12 > \mathbf{x}$
CUMULATIVE	$ x_1 + z > x_4$
SUM	x ₁ - x ₂ != 238
CIRCUIT	

Noisy data

- unlike in machine learning, most constraint acquisition techniques still assume the user always (knows how to) answer correctly
- Tighter integration with modern machine learning techniques

Thank you for your attention

Open for discussion and brainstorming

Learning constraint models from data: <u>http://osullivan.ucc.ie/CPML2023/submissions/01.pdf</u> Efficient Multiple Constraint Acquisition: <u>https://arxiv.org/abs/2109.05920</u>

