
HOLY GRAIL 2.0: FROM NATURAL LANGUAGE TO CONSTRAINT
MODELS
PTHG 2023

Dimos Tsouros1, Hélène Verhaeghe1, Serdar Kadıoğlu2, Tias Guns1

27 August 2023
1KULeuven, Leuven, Belgium, dimos.tsouros@kuleuven.be,helene.verhaeghe@kuleuven.be,tias.guns@kuleuven.be
2AI Center of Excellence, Fidelity Investments, USA, Department of Computer Science, Brown University, USA,
serdar.kadioglu@fmr.com

CONSTRAINT PROGRAMMING

■ Constraint programming (CP)
∙ Solving combinatorial problems in AI
∙ Assignment problems, scheduling and timetabling, bioinformatics, vehicle routing and
more

1

HOLY GRAIL OF COMPUTER PROGRAMMING

E. Freuder: ”Constraint programming represents one of the closest approaches
computer science has yet made to the Holy Grail of programming: the user states
the problem, the computer solves it”

■ Model + Solve paradigm

2

PROGRESS TOWARDS THE HOLY GRAIL

■ Advantages in modeling languages and other tools
∙ Unburden the user with technical details for each solver
∙ Closer to the stated goal
∙ Showed that CP has the capability to achieve the stated goal

3

HOLY GRAIL 2.0: STATING THE PROBLEM IN NATURAL LANGUAGE

■ Still a gap between the natural description of a problem and its formal formulation as
an optimization problem

■ Expertise is needed to model the problem as a constraint model

4

NATURAL LANGUAGE TO OPTIMIZATION MODELS

LARGE LANGUAGE MODELS

■ Huge recent advancements using Large Language Models (LLMs)
∙ Many succesfull LLMs (Bart, GPT etc.)
∙ Applications like: Chatbots (ChatGPT), code generators (Codex) translators ...
∙ Can be specialized to specific applications using fine-tuning or few-shot learning
∙ Can handle complex inputs, “seeing” connections between entities in paragraphs

6

LLMS FOR MODELING?

■ Potential to use LLMs to process textual descriptions of constraint models!

■ Can work well for simpler well-defined problems
■ Does it work well if not simple and not precisely defined?

7

MODELING IS NOT A SIMPLE TASK

Modeling is not a simple natural language processing task

■ Entity recognition in the textual description (Variables, constraints, objective)

■ Formulation as an optimization problem

■ Write code to modeling language?

8

RECENT WORKS

Many recent works have started to focus on Natural Language for Optimization
(NL4OPT)

■ Extract the optimization formulation from textual descriptions
■ Different than many NLP tasks:

- input text can be unstructured and ambiguous, especially when it describes many
constraints of different types

■ Mainly breaking the problem into 2 subtasks: Entity Recognition and Formulation

9

RECENT WORKS

■ The problem of NL4OPT was firstly proposed in 20221,
∙ The 2 subtasks were formally presented
∙ The first dataset for these problems was introduced

■ LLMs were exploited to tackle the 2 subtasks
∙ a pre-trained transformer is used (XLM-RoBERTa), fine-tuned for entity recognition,
∙ a BART-based model is used for prompt-based formulation,

1Ramamonjison et al., Augmenting Operations Research with Auto-Formulation of Optimization Models from
Problem Descriptions, EMNLP 2022

10

RECENT WORKS

■ Based on the work from2, a competition on NL4OPT took place in NeurIPS 20223.

∙ Several participants
∙ 1 challenge for each subtask
∙ Good results in both subtasks
∙ Focusing on LP problems

2Ramamonjison et al., Augmenting Operations Research with Auto-Formulation of Optimization Models from
Problem Descriptions, EMNLP 2022

3Ramamonjison et al., NL4Opt Competition: Formulating Optimization Problems Based on Their Natural
Language Descriptions, NeurIPS 2022 11

ENTITY RECOGNITION (NER4OPT)

■ Recognize optimization entities in textual descriptions4

■ Optimization entities:

- Parameters
- Variables
- Constraint direction
- Objective direction
- Objective

4Dakle et al. ”Ner4Opt: Named Entity Recognition for Optimization Modelling from Natural Language”, CPAIOR
2023

12

ENTITY RECOGNITION (NER4OPT)

Differs from the standard named entity recognition (NER) in important ways stem-
ming from the optimization context

■ Different entities
■ Same entities with different semantic theme
■ Multi-sentence word problem with high-level of compositionality, ambiguity,

variability
■ Ner4Opt must be domain agnostic and generalize to new instances and applications
■ Different view-points
■ Extremely limited training data. Even human annotation requires expertise. Must

operate on low-resource regime
4Dakle et al. ”Ner4Opt: Named Entity Recognition for Optimization Modelling from Natural Language”, CPAIOR

2023
13

HYBRID METHOD FOR NER4OPT

4Dakle et al. ”Ner4Opt: Named Entity Recognition for Optimization Modelling from Natural Language”, CPAIOR
2023

14

FORMULATING NER4OPT AS TOKEN CLASSIFICATION

4Dakle et al. ”Ner4Opt: Named Entity Recognition for Optimization Modelling from Natural Language”, CPAIOR
2023

15

REGULAR AUTOMATON FOR NAME EXTRACTION

Objective name and variables have many similarities To avoid confusion, automatons
were created

4Dakle et al. ”Ner4Opt: Named Entity Recognition for Optimization Modelling from Natural Language”, CPAIOR
2023

16

FORMULATION PROBLEM

■ How are the entities connected with each other?

∙ Where are the parameters used?
∙ What variables are involved in each constraint?
∙ What is the exact mathematical formulation of the
constraints and objective?

17

FORMULATION PROBLEM: SPLIT TO 2 SUBTASKS AGAIN

■ First find what variables/parameters participate in the constraints

■ Then extract the mathematical formulation

18

FORMULATING THE OPTIMIZATION PROBLEM

■ Augment the input problem description by encapsulating the named entities in
corresponding tags

■ Prompt-guided input using Bart-base and Bart-Large models

■ Extract either one constraint at a time5 67 or all-at-once8 9

5He et al., Linear programming word problems formulation using ensemble crf-NER labeler and t5 text
generator with data augmentations, arXiv 2022

6Ning, Y. et al., A novel approach for auto-formulation of optimization problems. arXiv, 2023
7Ramamonjison et al., Augmenting Operations Research with Auto-Formulation of Optimization Models from

Problem Descriptions, EMNLP 2022
8Jang, S., Tag embedding and well-defined intermediate representation improve auto-formulation of

problem description. arXiv, 2022
9Gangwar et al., Highlighting Named Entities in Input for Auto-Formulation of Optimization Problems, arXiv,

2022
19

FORMULATING THE OPTIMIZATION PROBLEM

■ Extract one constraint at a time

■ Extract whole model all-at-once

20

WORKS ON CP

■ All mentioned works focus on LP problems

■ An approach modeling problems in Minizinc was recently developed10

■ Extract whole model all-at-once + auto-debugging

10Almonacid, Towards an automatic optimisation model generator assisted with generative pre-trained
transformer. arXiv, 2023 21

OUTLINE OF OUR PROJECT

FRAMEWORK

23

SUBMODULES EXPLAINATION

■ NER: Entity recognition
■ Problem formulation in 2 subtasks

∙ REL: Entity relations recognition
∙ Formulate: Final formulation

■ Translate to a modeling language

■ Any from the existing methods can be
used in the first 3 steps
■ LLMs have been shown to be effective in
code-writing in well-predefined tasksa

aXu et al., A systematic evaluation of large language
models of code. International Symposium on Machine
Programming, 2022

24

NER

■ The NER4OPTa task described earlier
■ Recognize optimization entities in textual
descriptions

aDakle et al. ”Ner4Opt: Named Entity Recognition for
Optimization Modelling from Natural Language”, CPAIOR
2023

25

REL

■ First task of problem formulation: Find entities relations

∙ Input: Entities from the NER step and problem description
∙ Output: List of other entities participating in each entity

∙ Variables: <Hours at Farm 1> <50 strawberries/hour, 300 raspberries/hour>, <Hours at Farm 2> <70
strawberries/hour, 200 raspberries/hour>

∙ Constraints: <Strawberry Constraint> <3000 strawberries, Hours at Farm 1, Hours at Farm 2>, <Raspberry
Constraint> <15000 raspberries, Hours at Farm 1, Hours at Farm 2>

∙ Objective Function: <Total Time> <Hours at Farm 1, Hours at Farm 2>

∙ Objective Direction: Minimize

26

FORMULATE

■ Formulate: Final formulation

Parameters:
- S = 3000 (minimum strawberries to be picked)
- R = 15000 (minimum raspberries to be picked)
- S1 = 50 (strawberries per hour at farm 1)
- R1 = 300 (raspberries per hour at farm 1)
- S2 = 70 (strawberries per hour at farm 2)
- R2 = 200 (raspberries per hour at farm 2)

Variables:
- H1 (hours spent at farm 1)
- H2 (hours spent at farm 2)

Domains:
- H1, H2 >= 0

Constraints:
- S1*H1 + S2*H2 >= S (strawberry constraint)
- R1*H1 + R2*H2 >= R (raspberry constraint)

Objective Function:
- Minimize (H1 + H2)

27

TRANSLATE

■ Translate to a modeling language

from cpmpy import *

Parameters
S = 3000
R = 15000
S1 = 50
R1 = 300
S2 = 70
R2 = 200

Variables
H1 = intvar(0, int(S/S1 + R/R1)) # hours spent at farm 1
H2 = intvar(0, int(S/S2 + R/R2)) # hours spent at farm 2

Constraints
model = Model([S1*H1 + S2*H2 >= S, # strawberry constraint

R1*H1 + R2*H2 >= R]) # raspberry constraint

Objective Function
model.minimize(H1 + H2)

Solve the model
model.solve()

28

AUTOMATIC DEBUGGING

■ After the modeling process is completed, we have the code of the model in a modeling
language

■ It has been shown that LLMs can be exploited for bug-fixing with good results 11

■ In this step, the code from the previous step is compiled and run.

- If it outputs a bug it returns to the translation step, using the bug description returned in the prompt

- Stops when the code runs normally
11Sobania et al., An analysis of the automatic bug fixing performance of chatgpt, arXiv, 2023

29

REFINE MODEL

■ Present the final model and potential solution(s) to the user

■ In case the problem is unsatisfiable extract MUSes and refine the model interactively

■ In case the model is incomplete, refine the model using constraint acquisition to
complete it with the missing constraints

30

LEVERAGING LLMS

■ Leveraging LLMs in all submodules

■ LLMs
∙ Work on token-level
∙ Predict sequentially the next token.
∙ Prompt: User input

■ Prompt design plays a crucial role

■ Prompt Engineering

31

LEVELS OF ABSTRACTION

■ Various levels of abstraction in the problem description

- Problem and its categorization (knapsack, tsp etc.) stated clearly, describing the variables and constraints.

I wish to solve a Knapsack problem, where I have 5 items, and so 5 boolean variables to tell me which items are
picked. The weights of my items are 2, 3, 7, 4, and 1 with their utilities being 2, 3, 1, 2, and 3. The limit of weight is 10.

- Omit the problem category but still state it clearly, describing the variables and constraints.

I have 5 items, with 5 boolean variables showing if they are picked. Their weights are 2, 3, 7, 4, and 1 with their utilities
being 2, 3, 1, 2, and 3. The total weight I can carry is 10. I want to maximize the utility of the objects I take.

- Omit also the use of modeling lexical (variable, constraint), stating the problem as non-expert.

I want to go on vacation. The airport only allows 10 kg for my luggage. I have 5 items, with their weights being 2, 3, 7,
4, and 1 and their utilities being 2, 3, 1, 2, and 3. What items to pick?

- Most abstract form, where parameters can be implicit

I want to go on vacation. The airport allows 10 kg for my luggage. I have 5 items: my ski combination (7kg), some warm
clothes (4kg), boots (3kg), a book for hiking (1kg), and an umbrella (2kg). As I’m going hiking, I think my boots and my
book are really important, while the ski combination would not help me well. What items should I get with me?

32

EXAMPLE

I wish to solve a Knapsack problem, where I have 5 items, and
so 5 binary variables to tell me which item is in or not. The
weights of my items are 2, 3, 7, 4, and 1. The utilities of my items
are 2, 3, 1, 2, and 3. The limit of weight is 10

Parameters:
∙ n = 5 (number of items)

∙ weights = [2, 3, 7, 4, 1] (list of weights of each item)

∙ utilities = [2, 3, 1, 2, 3] (list of utilities of each item)

∙ limit = 10 (maximum weight allowed in the knapsack)
Variables:

∙ x[i] for i in range(n) (binary variable indicating whether item i is
selected or not) with domain x[i] in 0, 1 for all i in range(n)

Constraints:

∙ The sum of the weights of the selected items must be less than or
equal to the limit: sum(weights[i] * x[i] for i in range(n)) <= limit

Objective function:

∙ Maximize the total utility of the selected items: sum(utilities[i] * x[i] for
i in range(n))

from cpmpy import *

Parameters
n = 5
weights = [2, 3, 7, 4, 1]
utilities = [2, 3, 1, 2, 3]
limit = 10

Variables
x = boolvar(shape=n)

Constraints
model = Model(

sum(weights[i] * x[i] for i in range(n)) <= limit
)

Objective function
objective = sum(utilities[i] * x[i] for i in range(n))
model.maximize(objective)

model.solve()

33

EXAMPLE: NON-EXPERT DESCRIPTION

I wish to go on vacation. The airport only allows 10 kg for my
suitcase. I have 5 items: my ski combination, weighing 7 kg,
some warm clothes, weighing 4 kg, some hiking boots, weighing
3 kg, a book on hiking, of 1 kg, and some umbrella, of 2 kg. As I’m
going hiking, I think my boots and my book are really important,
while the ski combination would not help me well. Can you tell
me what items I should take in order to pass the best vacation?

Parameters:
- Weights of the items: w = [7, 4, 3, 1, 2]

- Importance of the items: v = [1, 2, 5, 5, 3]

- Maximum weight allowed: W = 10
Variables:

- x = [x1, x2, x3, x4, x5] where xi ∈ {0, 1}, ∀i ∈ {1, 2, 3, 4, 5}.

Constraints:

-
∑

wi ∗ xi ≤ W, ∀i ∈ {1, 2, 3, 4, 5}

Objective function:

- Maximize
∑

vi ∗ xi, ∀i ∈ {1, 2, 3, 4, 5}

from cpmpy import *

Parameters
W = 10
I = range(5)
w = [7, 4, 3, 1, 2]

Variables
x = boolvar(shape=len(I))

Constraints
model = Model(sum(w[i]*x[i] for i in I) <= W)

Objective
model.maximize(sum(x))

Solve
model.solve()

34

FUTURE WORK AND SUMMARY

FUTURE WORK

■ Exploit more CP and optimization domain knowledge in prompt-tuning, in-context
learning, and fine-tuning

■ Create a dataset for CP problems

- Input-Ouput for each submodule of the system
- Different levels of abstraction
- Different problem types
- Including all constraint types

36

FUTURE WORK

■ Fine-tune LLMs12 for each subtask

12Dodge et al., Finetuning pre-trained language models: Weight initializations, data orders, and early
stopping, arXiv, 2020

37

FUTURE WORK

■ Soft prompt-tuning is an alternative to fine-tuning LLMs13

■ Keeping the pre-trained LLM frozen (using the same model for all tasks)

■ Only learn a small task-specific (soft) prompt, consisting of k tunable tokens that are
prepended to the input text

13Lester et al.,The Power of Scale for Parameter-Efficient Prompt Tuning, arXiv, 2021
38

SUMMARY

■ We are closer to the stated goal for the Holy Grail

∙ Modeling languages, Constraint Acquisition ...

■ Gap from natural language description to CP model still exists

■ Advancements in Large Language Models boost NLP

■ Recent work on LP shows great potential

■ Outlined our project on a framework for ”Natural Language to CP models”

■ Use of LLMs and techniques from NL4OPT

■ Lots of future work ...

39

DEMONSTRATION

Time for a live demonstration!

40

	Natural language to optimization models
	Outline of our project
	Future Work and Summary

