A CPMpy-based Python library for Constraint Acquisition - PYCONA

Dimos Tsouros', Tias Guns'

'Department of Computer Science, KU Leuven, Belgium
dimos.tsouros @kuleuven.be, senne.berden @kuleuven.be, tias.guns @kuleuven.be

Abstract

Constraint Programming (CP) has been successfully used to
model and solve complex combinatorial problems. However,
modeling is often not trivial and requires expertise, which is
a bottleneck to wider adoption. As a result, the field of Con-
straint Acquisition (CA) has evolved with the aim to (semi-)
automate the modeling process by combining CP and Ma-
chine Learning.Passive CA acquires constraints using a set of
pre-existing examples of solutions and non-solutions, while
in (inter)active CA, the system is interacting with the user,
e.g., asking whether a (partial) solution satisfies their (unspec-
ified) constraints or not. Despite recent advancements in CA,
a key limitation is the lack of a generic, easily accessible tool
for practitioners and researchers to utilize these CA systems.
In this work, we present PYCONA, an open-source Python li-
brary for CA, which is based on the powerful CPMpy model-
ing library. PYCONA currently includes only interactive CA
methods, with the intention to also be extended to include
passive CA systems. PYCONA covers the state-of-the-art in
interactive CA, including a variety of different algorithms,
methods, and types of queries.

Introduction

Constraint Programming (CP) is considered one of the fore-
most paradigms for solving combinatorial problems in Ar-
tificial Intelligence. In CP, the user declaratively states the
constraints over a set of decision variables, defining the fea-
sible solutions to their problem, and then a solver is used to
solve it. Although CP has many successful applications on
combinatorial problems from various domains, the model-
ing process is not always trivial. This is limiting non-experts
from using CP on complex problems and is considered a ma-
jor bottleneck for its wider adoption (Freuder and O’ Sullivan
2014; Freuder 2018).

Motivated by the need to overcome this obstacle, assist-
ing the user in modeling is considered an important di-
rection (Kolb 2016; De Raedt, Passerini, and Teso 2018;
Freuder 2018; Lombardi and Milano 2018). In Constraint
Acquisition (CA), which is an area where CP meets Machine
Learning (ML), the model of a constraint problem is learned
from a set of examples (i.e., assignments to the variables) of
solutions and non-solutions, or via interaction with a user.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In passive CA, a set of pre-existing examples is given to
the system, and using these examples, a set of constraints is
returned (Bessiere et al. 2004, 2005; Lallouet et al. 2010;
Beldiceanu and Simonis 2012; Bessiere et al. 2017; Ku-
mar, Kolb, and Guns 2022; Berden et al. 2022). Many dif-
ferent approaches have been devised, some of them target-
ing fixed-arity constraints (Bessiere et al. 2005, 2017; Ku-
mar, Kolb, and Guns 2022; Prestwich et al. 2021; Prestwich
2020), while others learn global constraints from a prede-
fined constraint catalog (Beldiceanu and Simonis 2012).

On the other hand, active or interactive acquisition sys-
tems interact with the user to learn a target set of constraints,
which represent the problem the user has in mind (Freuder
and Wallace 1998; Bessiere et al. 2007, 2017). The most
common way of interaction is through the use of (partial)
membership queries (is this a solution or not?) (Bessiere
et al. 2007, 2013; Lazaar 2021; Tsouros and Stergiou 2020,
2021; Tsouros, Stergiou, and Bessiere 2019, 2020; Tsouros,
Stergiou, and Sarigiannidis 2018). To further reduce the
number of queries, more expressive types of queries have
also been explored (Bessiere et al. 2014; Daoudi et al. 2015,
2016).

Despite the recent advancements in both passive and ac-
tive CA, an important limitation remains: there is no generic
tool for using CA, including the various different methods
in the literature. Although research code implementing CA
systems from the literature has been made available, such
code is focused on accommodating the reproducibility of
paper experiments (Bessiere et al. 2023; Kumar, Kolb, and
Guns 2022; Tsouros, Berden, and Guns 2023, 2024).

In this short paper, we present PYCONA, an open-source
Python library for CA to alleviate this limitation. The aim
is to make CA systems easily accessible to researchers and
practitioners. In PYCONA, we implemented various state-
of-the-art interactive CA algorithms and methods from the
literature, including the recent advancements with the use
of statistical ML components (Tsouros, Berden, and Guns
2024). Passive CA systems are not included yet, which is
left for future work.

PYCONA focuses on ease of use, both for applying CA
systems to new problems and for the development and easy
integration of new CA methods, offering interfaces for the
various CA elements. PYCONA also provides an implemen-
tation of commonly used CA benchmarks to allow the com-

Algorithm I: Interactive Constraint Acquisition Template

Input: X, D, B, C;,, (X: the set of variables, D: the set
of domains, B: the bias, C,: an optional set of known
constraints)

Qutput: C, : the learned constraint network

1: CL — Cin
2: while True do
3: e < QGEN(Cp, B)

(B, S) + FINDSCOPE(e, B)
(B, CL) < FINDC(S, Cy, B)

4: if e =nil then return Cp, > converged
5: if ASK (e) = True then

6: B+ B\ kg(e)

7: else

8:

9:

parison of the different methods in the literature.

Background

A constraint satisfaction problem (CSP) is a triple P =
(X, D, (), consisting of:

* a set of n variables X = {x1,zo,...,z,}, representing
the entities of the problem,

* aset of n domains D = {Dy, D, ..., D, }, where D; C
7 is the finite set of values for z;,

¢ a constraint set (also called constraint network) C' =
{c1,¢2, Ct).

A constraint ¢ is a pair (rel(c), var(c)), where var(c)
C X is the scope of the constraint, and rel(c) is a relation
over the domains of the variables in var(c), that (implic-
itly) specifies which of their value assignments are allowed.
|var(c)| is called the arity of the constraint. An example ey
is an assignment on a set of variables Y C X. ey is rejected
by a constraint ¢ iff var(c) C Y and the projection €,q,(c)
of ey on the variables in the scope var(c) of the constraint
is not in rel(c). ko (ey) represents the subset of constraints
from a constraint set C[Y] that reject ey-.

Constraint Acquisition

Algorithm 1 presents the generic process followed in inter-
active CA through partial queries. The main concept is that
the CA system asks queries to an oracle, commonly referred
to as the user, and through these queries, constraints can be
removed from the candidates, or learned. The most common
type of query is the classification question ASK (ey), with
Y C X, asking the oracle if a (partial) assignment ey is a
(partial) solution to the problem that the user has in mind. If
the example posted to the user is classified as positive (line
5), then the candidate constraints in B that violate it are re-
moved (line 6), while if it is classified as negative (line 7) the
system tries to find a violated constraint through additional
queries (lines 8-9).

Interactive CA systems consist mainly of three compo-
nents, where (increasingly simpler) queries are generated
and posted to the user: (1) Top-level query generation (line

3), (2) Finding the scope(s) of violated constraints, if a neg-
ative example is found (line 8), (3) Finding the relations of
constraints in the scopes found (line 9).

PYCONA: Constraint Acquisition in Python

PYCONA is a Python-based, open-source package for CA.
Currently, only interactive CA methods are implemented in
PYCONA; passive CA methods might be added later. It is
developed with the following principles:

+ We developed PYCONA based on the CPMpy' modeling
library, a powerful solver-independent Python library for
CP modeling, which is used for modeling the variables
and constraints of the problem.

* As CPMpy provides access to a variety of solvers that can
be used during the acquisition process, PYCONA itself is
also solver-independent.

* PYCONA provides interfaces for various crucial ele-
ments of the CA process, focusing on ease of use, both
for applying CA systems to new problems and for the
development and easy integration of new methods.

* We have re-implemented the major state-of-the-art in-
teractive CA algorithms and methods, allowing the use
of the system of choice and the comparison of different
methods present in the literature.

* PYCONA also provides an implementation of commonly
used CA benchmarks to allow the comparison of the dif-
ferent methods in the literature and the evaluation of new
methods.

* We have based the predictive component on scikit-learn,
a well-known and widely used machine learning library,
and have implemented the constraint-level feature repre-
sentation from (Tsouros, Berden, and Guns 2024). We
also provide interfaces for using any desired predictor
and/or custom feature representations.

We now provide a detailed discussion of the main techni-
cal components of PYCONA.

Problem Instances

In CA, the system needs as input the vocabulary (X, D)
of the problem and a language I' which describes the re-
lations that can appear in the problem. In PYCONA, this
information, defining the CA task, is encapsulated in the
ProblemInstance class.

An object of this class represents an instance of the prob-
lem the user wants to acquire the constraints for. It must be
initialized with the vocabulary of the problem, i.e. its vari-
ables with their domains, and a constraint language. An ex-
ample of creating a ProblemInstance in PYCONA can be
seen in Listing 1. For the vocabulary, we can use any type of
variable supported in CPMpy. Then, to create the language,
we use PYCONA’s abstract variables (created with absvar
(shape)) which can be used to create the language’s ab-
stract relations. Using the vocabulary (X, D) and the rela-
tions in the constraint language I', the system generates the
constraint bias B, which is the set of all expressions that are
candidate constraints for the problem.

"https://github.com/CPMpy/cpmpy

Listing 1: Creating Problem Instances

Listing 3: Using a constraint-based oracle

import cpmpy as cp
import pycona as ca

Vocabulary —-——————

Define the variables

lower bound, upper bound, shape, variable
names

int_vars = cp.intvar(l, 4, shape=(4,4),

name="var")
Language ——————-—

abstract vars from pycona
AV = ca.absvar(2)

abstract relations using the abstract

vars

lang = [AV[0] == AV[1],
AV[0] != AV[1],
AV[0] < AV[1],
AV[0] > AV[1],
AV[0] >= AVI[1],
AV[0] <= AVI[1]]

ProblemInstance ———————
instance = ca.ProblemInstance (variables=
int_vars, language=lang)

Listing 2: Using a CA algorithm

Create an interactive CA system

ga = ca.QulAcq()

learned_instance = ga.learn(instance,
verbose=1)

learned_instance.cl stores Cp

Interactive Constraint Acquisition

After creating the ProblemInstance, a CA system is then
used to acquire the constraints of the problem instance at
hand. The goal of CA is to learn a constraint set C, that is
equivalent to the (unknown) target constraint set Cp. Py-
CONA implements a range of interactive CA algorithms
(module .active_algorithms). The core of interactive CA sys-
tems is the AlgorithmCAInteractive class. This is sub-
classed with different algorithms from the literature. An ex-
ample using QUACQ algorithm is shown in Listing 2.

Oracle In interactive CA, the system interacts with an or-
acle, which can be a human user or a software system (simu-
lated oracle). The CA system asks queries, and based on the
answers of the oracle, it either learns or excludes constraints.
In PYCONA, the default oracle is a human user. A sim-
ulated constraint-based oracle is also implemented, in the
ConstraintOracle class, to allow the use of a constraint
set as an oracle for experimental procedures. A simple inter-
face is provided for implementing additional oracles, sub-
classing the Oracle abstract class, allowing the use of other
software systems in answering the queries, based on the cur-
rent application. An example using the constraint-based or-

Create an oracle
C = ... # a set of constraints
oracle = ca.ConstraintOracle (C)

Use the oracle during interactive CA
ga = ca.QuAcq()
learned_instance = ga.learn(instance,

oracle=oracle, verbose=1l)

Listing 4: Creating a custom environment

TR

Creating a custom environment
Use the basic FindScope instead of the
default FindScope2.
env = ca.ActiveCAEnv (find_scope=
ca.FindScope ())

il

initialize the CA system with env

ga_fsl = ca.QuAcqg(env)

acle is presented in Listing 3.

CA Environment A CA environment is used in each CA
system. CA environments are used to offer the core com-
mon functionality and carry the necessary data structures
of CA systems. The environment for interactive CA sys-
tems is the Act iveCAEnv, which is created and used by de-
fault. Using the environment, the user can also configure the
exact settings of the used interactive CA system, choosing
the methods used for its subcomponents:

* Query Generation: The query generation system to be
used to generate top-level queries.

* FindScope: The FindScope method to be used for finding
the scope of violated constraints.

* FindC: The FindC method to be used for finding the exact
violated constraints in the given scopes.

Listing 4 shows how to create a custom environment using
a different FindScope method than the default one.

Guiding CA systems In each of the different components
of interactive CA, queries are posted to the user. Query
generation requires solving a CSP with the goal being to
find an assignment to the variables, satisfying the learned
constraints and violating at least one candidate constraint.
In (Tsouros, Berden, and Guns 2023) a method to guide
the top-level query generation was proposed, introducing an
objective function that uses probabilities obtained from a
predictive model. This approach was extended in (Tsouros,
Berden, and Guns 2024) to the rest of the interactive CA
components, i.e., in FINDSCOPE and FINDC.

PYCONA implements this approach, using the prediction-
based environment ProbaAct iveCAEnv, which has 2 addi-
tional configurable options:

* Feature representation (.feature_representation): The fea-
ture representation used for the constraints

* Classifier (.classifier): The (probabilistic) classifier used
to predict probabilities for the candidate constraints

Listing 5: Using the probabilistic environment

Using the probabilistic environment
env = ca.ProbaActiveCAEnv ()
ga_predict = ca.GrowAcq(env)
learned_instance = ga_predict.learn(

instance, oracle)

Listing 6: Getting the performance statistics

Create an interactive CA system

ga = ca.QuAcq()

learned_instance = ga.learn(instance,
verbose=1)

Access the performance statistics

statistics = ga.env.metrics.statistics

short_statistics = ga.env.metrics.

short_statistics

When this environment is used, the CA system uses
the given feature representation to create a dataset of con-
straints, and then the given probabilistic classifier will be
used to provide probabilities for guiding query generation.

Metrics

PYCONA offers evaluation metrics to assess the perfor-
mance of CA systems, allowing experimental evaluation
and comparative analysis of implemented systems. The per-
formance statistics are stored in CASystem.env.metrics.
Listing 6 presents how to access the statistics stored.

Benchmarks

In PYCONA, we also provide an implementation of com-
monly used CA benchmarks to allow the experimental eval-
uation and comparison of the different methods in the liter-
ature or newly developed ones. An example using the nurse
rostering benchmark is shown in Listing 7.

Implemented methods

Various approaches and methods from the literature are im-
plemented in PYCONA:
* Algorithms:

— QUACQ (Bessiere et al. 2013, 2023),
— G-QUACQ (Daoudi et al. 2015).
— P-QUACQ (Daoudi et al. 2016),

Listing 7: Using PYCONA'’s benchmarks

importing a benchmark

from pycona.benchmarks import
construct_nurse_rostering

instance, oracle = construct_nurse_rostering
(shifts_per_day=3, num_days=5,
num_nurses=8, nurses_per_shift=2)

ga = ca.QuAcq()
learned_instance = ga.learn(instance,
oracle, verbose=1)

— MQUACQ (Tsouros, Stergiou, and Sarigiannidis 2018;
Tsouros and Stergiou 2020),

— MQUACQ-2 (Tsouros, Stergiou, and Bessiere 2019),
— GROWACQ (Tsouros, Berden, and Guns 2023),

* Query Generation:

— TQ-Gen (Addi et al. 2018),
— PQ-Gen (Tsouros, Stergiou, and Bessiere 2019).

— ML-based query generation objectives (Tsouros,
Berden, and Guns 2024)

* FindScope:

— FindScope (Bessiere et al. 2013),

— Findscope-2 (Tsouros and Stergiou 2020; Bessiere
et al. 2023)

e FindC:

— FindC (Bessiere et al. 2013),
— FindC-2 (Bessiere et al. 2023)

Conclusion

We introduced PYCONA, an open-source python library for
constraint acquisition. We believe that this is a significant
step forward in making CA tools more accessible for both
researchers and practitioners. Our aim is that this will fa-
cilitate further research on CA, along with more real-world
applications. Thus, the focus of PYCONA is on ease of use,
integration, and extension, providing interfaces for various
crucial elements of the CA process.

In addition, by basing PYCONA on the high-level CPMpy
modeling library, we provide a solver-independent environ-
ment, allowing the users to build their own CSPs and bench-
marks for CA. At the same time, we are bridging the gap
with ML, allowing users to exploit the integration of power-
ful ML packages that are available in Python, benefiting at
the same time from advancements in such fields.

PYCONA a very wide range state-of-the-art methods in
interactive CA, allowing the use of the system of choice for
applications in new problems. In addition, PYCONA pro-
vides evaluation metrics to assess the performance of CA
systems, as well ass implementation of commonly used CA
benchmarks, to allow the experimental evaluation of new
methods, and the comparison with existing ones.

Despite these advancements, there are areas for future im-
provement. Currently, PyConA focuses solely on interactive
CA methods, while passive CA methods are planned for fu-
ture integration. Adding passive methods to the library will
provide users with a more complete and practical toolkit.
Additionally, this would allow the use of hybrid (passive and
active) CA systems in problems where these can comple-
ment each other.

Installation PYCONA is available in pip: pip install
pycona

Code The code is open source and available online:
https://github.com/cpmpy/pycona

Acknowledgments

This research received funding from the European Research
Council (ERC) under the EU Horizon 2020 research and in-
novation programme (Grant No. 101002802, CHAT-Opt).

References

Addi, H. A.; Bessiere, C.; Ezzahir, R.; and Lazaar, N. 2018.
Time-Bounded Query Generator for Constraint Acquisi-
tion. In International Conference on the Integration of
Constraint Programming, Artificial Intelligence, and Oper-
ations Research, 1-17. Springer.

Beldiceanu, N.; and Simonis, H. 2012. A model seeker: Ex-
tracting global constraint models from positive examples.
In Principles and practice of constraint programming, 141—
157. Springer.

Berden, S.; Kumar, M.; Kolb, S.; and Guns, T. 2022. Learn-
ing MAX-SAT Models from Examples using Genetic Algo-
rithms and Knowledge Compilation. In 28th International
Conference on Principles and Practice of Constraint Pro-
gramming (CP 2022).

Bessiere, C.; Carbonnel, C.; Dries, A.; Hebrard, E.; Kat-
sirelos, G.; Narodytska, N.; Quimper, C.-G.; Stergiou, K.;
Tsouros, D. C.; and Walsh, T. 2023. Learning constraints
through partial queries. Artificial Intelligence, 319: 103896.

Bessiere, C.; Coletta, R.; Daoudi, A.; Lazaar, N.;
Mechgrane, Y.; and Bouyakhf, E.-H. 2014. Boosting Con-
straint Acquisition via Generalization Queries. In ECAI,
99-104.

Bessiere, C.; Coletta, R.; Freuder, E. C.; and O’Sullivan,
B. 2004. Leveraging the learning power of examples in
automated constraint acquisition. In International Confer-
ence on Principles and Practice of Constraint Program-
ming, 123-137. Springer.

Bessiere, C.; Coletta, R.; Hebrard, E.; Katsirelos, G.;
Lazaar, N.; Narodytska, N.; Quimper, C.-G.; Walsh, T.;
et al. 2013. Constraint Acquisition via Partial Queries. In
1JCAI volume 13, 475-48]1.

Bessiere, C.; Coletta, R.; Koriche, F.; and O’Sullivan, B.
2005. A SAT-based version space algorithm for acquiring
constraint satisfaction problems. In European Conference
on Machine Learning, 23-34. Springer.

Bessiere, C.; Coletta, R.; O’Sullivan, B.; Paulin, M.; et al.
2007. Query-Driven Constraint Acquisition. In IJCAI, vol-
ume 7, 50-55.

Bessiere, C.; Koriche, F.; Lazaar, N.; and O’Sullivan, B.
2017. Constraint acquisition. Artificial Intelligence, 244:
315-342.

Daoudi, A.; Lazaar, N.; Mechqrane, Y.; Bessiere, C.; and
Bouyakhf, E. H. 2015. Detecting types of variables for gen-
eralization in constraint acquisition. In 2015 IEEE 27th In-
ternational Conference on Tools with Artificial Intelligence
(ICTAI), 413-420. IEEE.

Daoudi, A.; Mechqgrane, Y.; Bessiere, C.; Lazaar, N.; and
Bouyakhf, E. H. 2016. Constraint Acquisition Using Rec-
ommendation Queries. In IJCAI: International Joint Con-
ference on Artificial Intelligence, 720-726.

De Raedt, L.; Passerini, A.; and Teso, S. 2018. Learning
constraints from examples. In Proceedings in Thirty-Second
AAAI Conference on Artificial Intelligence.

Freuder, E. C. 2018. Progress towards the Holy Grail. Con-
straints, 23(2): 158-171.

Freuder, E. C.; and O’Sullivan, B. 2014. Grand challenges
for constraint programming. Constraints, 19(2): 150-162.

Freuder, E. C.; and Wallace, R. J. 1998. Suggestion strate-
gies for constraint-based matchmaker agents. In Interna-
tional Conference on Principles and Practice of Constraint
Programming, 192-204. Springer.

Kolb, S. M. 2016. Learning constraints and optimization
criteria. In Workshops at the Thirtieth AAAI Conference on
Artificial Intelligence.

Kumar, M.; Kolb, S.; and Guns, T. 2022. Learning Con-
straint Programming Models from Data Using Generate-
And-Aggregate. In 28th International Conference on Prin-
ciples and Practice of Constraint Programming (CP 2022).
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.

Lallouet, A.; Lopez, M.; Martin, L.; and Vrain, C. 2010. On
learning constraint problems. In Tools with Artificial Intel-
ligence (ICTAI), 2010 22nd IEEE International Conference
on, volume 1, 45-52. IEEE.

Lazaar, N. 2021. Parallel Constraint Acquisition. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 35, 3860-3867.

Lombardi, M.; and Milano, M. 2018. Boosting Combina-
torial Problem Modeling with Machine Learning. arXiv
preprint arXiv:1807.05517.

Prestwich, S. D. 2020. Robust constraint acquisition by se-
quential analysis. Frontiers in Artificial Intelligence and
Applications, 325: 355-362.

Prestwich, S. D.; Freuder, E. C.; O’Sullivan, B.; and
Browne, D. 2021. Classifier-based constraint acquisition.
Annals of Mathematics and Artificial Intelligence, 1-20.

Tsouros, D.; Berden, S.; and Guns, T. 2023. Guided
Bottom-Up Interactive Constraint Acquisition. In Interna-
tional Conference on Principles and Practice of Constraint
Programming.

Tsouros, D. C.; Berden, S.; and Guns, T. 2024. Learning to
Learn in Interactive Constraint Acquisition. In Wooldridge,
M. J.; Dy, J. G.; and Natarajan, S., eds., Thirty-Eighth AAAI
Conference on Artificial Intelligence, AAAI 2024, February
20-27, 2024, Vancouver, Canada, 8154-8162. AAAI Press.

Tsouros, D. C.; and Stergiou, K. 2020. Efficient multiple
constraint acquisition. Constraints, 25(3): 180-225.

Tsouros, D. C.; and Stergiou, K. 2021. Learning Max-CSPs
via Active Constraint Acquisition. In 27th International
Conference on Principles and Practice of Constraint Pro-
gramming (CP 2021). Schloss Dagstuhl-Leibniz-Zentrum
fiir Informatik.

Tsouros, D. C.; Stergiou, K.; and Bessiere, C. 2019.
Structure-Driven Multiple Constraint Acquisition. In In-
ternational Conference on Principles and Practice of Con-
straint Programming, 709-725. Springer.

Tsouros, D. C.; Stergiou, K.; and Bessiere, C. 2020. Omis-
sions in Constraint Acquisition. In International Confer-
ence on Principles and Practice of Constraint Program-
ming, 935-951. Springer.

Tsouros, D. C.; Stergiou, K.; and Sarigiannidis, P. G. 2018.
Efficient Methods for Constraint Acquisition. In 24th In-
ternational Conference on Principles and Practice of Con-
straint Programming.

