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Abstract

Constraint Acquisition (CA) aims to widen the use of con-
straint programming by assisting users in the modeling pro-
cess. However, most CA methods suffer from a significant
drawback: they learn a single set of individual constraints
for a specific problem instance, but cannot generalize these
constraints to the parameterized constraint specifications of
the problem. In this paper, we address this limitation by
proposing GENCON, a novel approach to learn parameterized
constraint models capable of modeling varying instances of
the same problem. To achieve this generalization, we make
use of statistical learning techniques at the level of individ-
ual constraints. Specifically, we propose to train a classifier
to predict, for any possible constraint and parameterization,
whether the constraint belongs to the problem. We then show
how, for some classes of classifiers, we can extract decision
rules to construct interpretable constraint specifications. This
enables the generation of ground constraints for any parame-
ter instantiation. Additionally, we present a generate-and-test
approach that can be used with any classifier, to generate the
ground constraints on the fly. Our empirical results demon-
strate that our approach achieves high accuracy and is robust
to noise in the input instances.

Code — https://github.com/Dimosts/GenConModels
Extended Version — https://arxiv.org/abs/2412.14950

Introduction
Constraint Programming (CP) is considered one of the main
paradigms for solving combinatorial problems in AI. It pro-
vides powerful modeling languages and solvers for decision-
making, with many successful applications (Wallace 1996;
Simonis 1999). In CP, the user declaratively states the con-
straints over a set of decision variables, thereby defining the
feasible solutions to their problem. A solver is then used
to generate a solution. However, modeling a new applica-
tion as a constraint problem requires significant expertise,
which is a barrier to the wider use of CP (Freuder and
O’Sullivan 2014; Freuder 2018). This has motivated the
development of methods to assist the user in the model-
ing process (De Raedt, Passerini, and Teso 2018; Freuder
2018; Kolb 2016; Lombardi and Milano 2018). This is
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the focus of the research area of Constraint Acquisition
(CA) (Bessiere et al. 2017), which has been identified as an
important topic for CP (De Raedt, Passerini, and Teso 2018)
and as progress toward the “Holy Grail” of computer sci-
ence (Freuder 2018).

In CA, constraints are either learned passively
from a set of known solutions and (optionally) non-
solutions (Beldiceanu and Simonis 2012; Berden et al.
2022; Prestwich et al. 2021) or actively through interaction
with a user (Bessiere et al. 2023; Tsouros and Stergiou
2020, 2021). Recent advancements in both passive and
active acquisition systems show significant potential (Prest-
wich et al. 2021; Prestwich and Wilson 2024; Tsouros,
Berden, and Guns 2024). For instance, a recent application
of interactive CA in a real-world scheduling problem was
presented in (Barral et al. 2024).

However, a significant limitation of most (passive and ac-
tive) CA systems is that they only learn the ground con-
straints of a specific problem instance (Arcangioli, Bessiere,
and Lazaar 2016; Bessiere et al. 2017; Prestwich 2021;
Prestwich et al. 2021; Tsouros, Stergiou, and Sarigian-
nidis 2018), while in practice it is common for the in-
stance at hand to change over time. To accommodate these
changes, well-known constraint modeling languages like
MiniZinc (Nethercote et al. 2007) and CPMpy (Guns 2019)
allow the use of parameters in the constraint model. An as-
signment of values to the parameters then instantiates the
ground constraints for a given instance of the problem. For
example, in exam timetabling with the requirement ‘ex-
ams of courses that are given in the same semester should
be scheduled on different days’, the actual ground con-
straints will be instantiated based on the following parame-
ters: which semester each course belongs to, and how many
timeslots are available per day. Achieving the same ability
to generalize the constraint models learned using CA over
different instances of the same problem class has been iden-
tified as a key challenge for CA (Simonis 2023).

In the literature on CA, there are only a few works that
support generalization. The first approach for generalizing
constraints was introduced in interactive CA (Bessiere et al.
2014; Daoudi et al. 2015), to enhance the acquisition pro-
cess within a single instance. Although it targets within-
instance generalization, this approach can be used across
instances. Another approach, called extrapolation, was re-



cently explored (Prestwich 2022). This method requires
learning ground constraints for multiple instances, which
are then extrapolated to a new instance with different pa-
rameters. A limitation is that because it is based on genetic
programming, it tends to learn contrived, non-interpretable
expressions. A third approach is to learn interpretable pa-
rameterized forms of constraints during the acquisition pro-
cess (Lallouet et al. 2010; Kumar, Kolb, and Guns 2022),
given examples from different instances of the problem, with
the corresponding instance parameters also explicitly given.
In (Lallouet et al. 2010) an inductive logic programming
approach is used to learn rules of the form condition ⇒
constraint. On the other hand, COUNT-CP (Kumar, Kolb,
and Guns 2022) first learns instance-specific constraints,
which are then grouped to obtain first-order constraints that
can generalize to unseen instances.

In the literature, there is no standardized method for repre-
senting parameterized constraint specifications. As a result,
the different approaches mentioned target different gener-
alizations based on pre-defined partitions of variables. This
prevents them from capturing the diverse range of constraint
specifications that may exist in CP models. Finally, methods
relying on symbolic search can be expected to struggle in
the presence of noise in the input ground constraints, which
can obscure the underlying patterns they search for.

In this paper, we first formalize the elements of a pa-
rameterized constraint specification, capturing the require-
ments of a constraint problem in a generic and parameter-
ized way. Then, we propose GENCON, a novel approach
to learn such constraint specifications from the ground con-
straints of given instances of the problem. To achieve that,
our method leverages the capabilities of statistical machine
learning (ML) to learn complex functions from labeled data.
In more detail, our contributions are:

• We introduce an approach for generalizing from one or
more given problem instances using constraint-level clas-
sification, and we present a parameterized feature repre-
sentation to capture the constraint specifications.

• For classifiers that allow decision rule extraction, we
present a method to translate them into interpretable con-
straint specifications. These can then be used to generate
ground constraints for new problem instances.

• To enable the use of our method with classifiers that do
not allow rule extraction, we present a generate-and-test
approach that can be used with any classifier.

• We conduct a comprehensive experimental evaluation of
our methods, using different classifiers across a range of
problem classes and instances. We also show that our ap-
proach is robust to noise in the given ground constraints.

Background
We now introduce the necessary concepts used in the paper.

Constraint Satisfaction Problems A constraint satisfac-
tion problem (CSP) is a triple P = (V,D,C), defining:

• a set of n decision variables V = {v1, v2, ..., vn}, repre-
senting the entities of the problem,

• a set of n domains D = {Dv1 , Dv2 , ..., Dvn}, with
Dvi ⊂ Z being the domain of vi ∈ V ,

• a constraint set C = {c1, ..., ct}. over the variables in V .
A constraint c is a pair (rel(c), var(c)), where var(c)

⊆ V is the scope of the constraint, and rel(c) is a relation
over the domains of the variables in var(c), restricting their
allowed value assignments. The arity of the constraint, de-
noted as |var(c)| = arity(rel(c)), indicates the number of
variables involved. The set of solutions of a constraint set C
is denoted by sol(C).

Constraint Acquisition In Constraint Acquisition (CA),
the pair (V,D) is called the vocabulary of the problem at
hand and is common knowledge shared by the user and the
system. Besides the vocabulary, the learner is also given a
language Γ consisting of a broad range of fixed arity con-
straint relations that may exist in the problem at hand. Us-
ing the vocabulary (V,D) and the constraint language Γ, the
system generates the constraint bias B, which is the set of all
expressions that are candidate constraints for the problem.

The (unknown) target constraint set CT is a constraint set
such that for every example e it holds that e ∈ sol(CT ) iff
e is a solution to the problem the user has in mind. The goal
of CA is to learn a constraint set CL that is equivalent to the
unknown target constraint set CT .

Machine Learning Classification ML classification is
a supervised learning task that involves learning a func-
tion over a given dataset. The dataset, denoted as
E, is a collection of N training examples, E =
{(x1, y1), (x2, y2), ..., (xN , yN )}. Each example is a pair
(xi, yi), where xi is a feature vector from the input space
X and yi is the corresponding class label from the output
space Y . The feature vector xi is composed of m features,
xi = (ϕi1, ϕi2, . . . , ϕim), with each feature ϕij being a
(quantifiable) property of example i. In the case of classi-
fication, Y is a set of possible class labels. An ML classifier
aims to learn a function fθ : X → Y , using a set of learnable
parameters θ. These parameters are adjusted during training
to minimize a loss function L(fθ(x), y) measuring the error
between the predicted and actual class labels.

Decision Rules With the rising importance of explainable
AI (XAI) and interpretable ML, various approaches focus
on extracting decision rules from ML models (Gilpin et al.
2018). These approaches represent the function fθ : X → Y
with if-then rules, denoted as a set R = {r1, r2, ..., rk}.
Each decision rule ri is a pair (Qi, yi), with Qi being a set
of conditions and yi a class label. Each condition qij ∈ Qi is
a function qij : X → {0, 1} that maps an example x to a bi-
nary value indicating whether the given example satisfies the
condition. For a rule ri = (Qi, yi) to be satisfied, all of its
conditions need to be satisfied, i.e., qij(x) = 1 | ∀qij ∈ Qi.

Problem Definition
Constraint problems are often not thought of as a single CSP,
but as a set of requirements, with the specific instantiation
of the ground CSPs depending on the values of some input
parameters P . We illustrate this with the following example,
which we will also use as a running example.



Example 1. Consider a simplified exam timetabling prob-
lem with s semesters and n courses per semester. The goal
is to schedule the courses’ exams over d days, each hav-
ing t timeslots. The parameters of the problem are P =
{s,n, d, t}. The requirements are that all exams must be
scheduled in different timeslots, while exams of courses from
the same semester must be on different days. Different val-
ues for the parameters will lead to different ground CSPs for
each problem instance. The parameters n and s determine
the variables V of the problem, while d and t determine their
domains D. The parameter values also determine the set
of constraints C. The problem contains different_day
constraints, which are defined over partitions of variables
for courses in the same semester, and the allowed assign-
ments depend on the timeslots per day t.

Definition 1. A parameterized constraint problem con-
sists of a set of parameters P = {p1, p2, . . . , pq}, and
a function mapping each parameter instantiation PA =
{(p1, uA1), (p2, uA2), . . . , (pq, uAq)} onto a ground CSP
with (VA, DA, CA). The resulting tuple (PA, VA, DA, CA)
is a problem instance.

Most CA techniques are aimed at learning the constraint
set CT of a single ground CSP, from examples of solutions
and non-solutions of that instance. However, in learning, one
is often interested in generalizing beyond the instance used
for learning, across other instances of the same underlying
parameterized constraint problem.

Definition 2. Given one or more problem instances de-
scribed by tuples (PA, VA, DA, CA), the objective of gen-
eralization is to construct a function F such that, for
any target problem instance with a vocabulary (VT , DT ),
defined by a unique set of parameter values PT =
{(p1, uT1), (p2, uT2), . . . , (pq, uTq)}, F (PT , VT , DT ) will
return the corresponding set of constraints CT . That is, the
aim is to learn the function F from the given ground CSPs,
to be able to accurately determine the set of constraints CT

for any target instance with parameters PT .

Constraint Specifications
Being able to generalize constraint models involves find-
ing such a function F (definition 2). Typically, in constraint
problems, such a function F can be decomposed into several
inner functions – which we model as constraint specifica-
tions (CSs) – each corresponding to a specific requirement
of the problem; for example ”all courses must be scheduled
in a different timeslot”. The complete set of constraints CT

of an instance T is then the union of the sets of constraints
produced by each inner function.

Each requirement is modeled by a constraint specifica-
tion, which defines how to derive the pairs (rel(c), var(c))
for any target instance T , using the parameter values PT

and the corresponding vocabulary (VT , DT ). We consider
the following three key elements of a CS:

1. Constraint relation. The relation rel(c) of each constraint
in this CS, which may optionally depend on parameters
that determine constant values involved in the relation.

2. Variable partition(s). Typically, a pattern that appears in a
constraint model concerns certain partitions of variables
of the problem and is applied to sequences of variables in
this partition. Such partitions can be the dimensions (e.g.,
rows and columns) of the (multi-dimensional) matrix the
variables are given in, or based on latent dimensions in
this tensor.

3. Sequence conditions. These define which scopes within
a partition of variables to apply the constraints to. It
is common to have a constraint apply to all possible
scopes in a partition. This is done by using the sequence
all_pairs for binary constraints, or more generally,
the sequence combinations, to find combinations of
size arity(r) (the arity of the given relation). However,
there may also be sequence conditions, restricting the
variable combinations that should be taken as scopes.

Using these three key elements, we now formally define
constraint specifications:

Definition 3. A constraint specification (CS) is a triple
(r,G, S), defining

• a relation r, along with any parameters defining its con-
stants,

• a variable partition function G : VT → P(VT ), that
partitions a given set of variables VT into subsets based
on certain characteristics,

• a set of sequence conditions S restricting the scopes to
which the constraints are applied.

A CS can generate the corresponding ground constraints of
an instance T using the following generator template:

Foreach Y ∈ P(V T ):
Foreach scope ∈ combinations(Y, arity(r),

S):
c ← (rel(c) = r, var(c) = scope)

Example 2. Consider a problem with the requirement “Val-
ues of consecutive variables in the same row must differ”.
The CS modeling this requirement uses the “ ̸=” relation.
The different partitions used in the CS are the rows of the
variable matrix. The CS alsone needs to express the se-
quence condition that the variables need to be consecutive,
as it does not apply to all pairs of variables in the same row.
In a modeling language, this requirement would be modeled
as:
Foreach row ∈ all_rows:

Foreach v1, v2 ∈ consecutive_pairs(row):
c ← v1 ̸= v2

This is equivalent to our formally defined CS gen-
erator, where P(VT ) corresponds to all_rows
and consecutive_pairs corresponds to
combinations with arity 2, and sequence condition
column(v1) - column(v2) == 1.

Generalizing Constraint Models
To generalize beyond one or more known instances and learn
the CSs of a problem, we propose an approach named GEN-
CON. The key idea is to use ML to identify patterns in the
constraints of the known instance(s) and reconstruct the CSs



of the problem. This is especially promising because, re-
cently, an approach using probabilistic classification during
active CA (Tsouros, Berden, and Guns 2024) demonstrated
that ML classifiers can effectively detect patterns within the
learned constraint network.

GENCON is shown in Figure 1. The given set of ground
constraints in the input instance(s) is used in order to train a
classifier to predict for any constraint whether it belongs to
the set of constraints of any target instance of the problem.
For this, we use a (parameterized) feature representation of
the constraints, whose design is inspired by the different el-
ements of CSs discussed in the previous section. For classes
of classifiers allowing the extraction of decision rules, we di-
rectly translate these rules to the CSs of the problem, which
can produce the ground constraints of any target instance.
When decision rules cannot be extracted, a generate-and-test
approach is used instead.

Building the Dataset
We build a dataset on the constraint level, i.e., its examples
correspond to individual constraints. Given a set of con-
straints CA for a problem instance A, and a distinct set of
constraints C−

A , consisting of constraints that are not part
of the model, we define a dataset E, wherein each training
example is represented as a tuple (xi, yi), corresponding to
a constraint ci ∈ C. For each example (xi, yi), we have
xi = ϕσ(ci,P), which is a parameterized feature represen-
tation of constraint ci, and yi = [ci ∈ CA], a Boolean label
that indicates whether ci is part of the set of true constraints
or not.

E = {(xi, yi) | xi = ϕσ(ci,P) ∧ yi = [ci ∈ CA],

∀ ci ∈ {CA ∪ C−
A}},

(1)

However, realistically, we may only have access to the set
of true constraints CA for each problem instance. But we
also need a set of constraints C−

A consisting of constraints
that will have a negative label, for the classifier to learn how
to distinguish between the classes. To produce this set, we
first generate a set of constraints BA, using as a language Γ
all relations detected in the given set of constraints CA, i.e,
Γ = {rel(c) | c ∈ CA}. The bias BA is created by applying
each relation in Γ to all possible scopes in VA. The set C−

A
then consists of all constraints in BA that are not part of the
given instance(s), i.e., C−

A = BA \ CA.

Parameterized Feature Representation
In our approach, we propose a framework for the (param-
eterized) feature representation of constraints, targeted at
learning patterns based on the different elements of CSs dis-
cussed above. For any constraint c, the classifier expects a
fixed-size feature representation ϕ(c) as input. As shown
in the middle of Figure 1, this feature representation ϕ(c)
is then transformed to a parameterized version, denoted by
ϕσ(c), to be able to learn patterns across instances with dif-
ferent parameter values.

Feature Representation. The feature representation ϕ(c)
must be designed based on the different elements of CSs
that we want the classifier to detect in the problem, i.e., the

relations, partitioning functions, and sequence conditions.
Hence, it must contain features that describe the constraint
relations, variable characteristics that can be used to recog-
nize partitions of the variables, and other attributes that can
play a role in the sequence conditions. Based on this, we
construct a feature representation consisting of three groups
of features:

1. Relation features: Features that capture properties of the
relation rel(c) of a given constraint c, along with numer-
ical values of the constants present in the constraint.

2. Partitioning features: Features describing whether the
variables in the scope of constraint c have characteristics
in common that can be used in the partitioning function.
These characteristics can be problem-specific variable
properties (e.g., in what semester a course takes place
in exam timetabling), or based on information regarding
the structure the variables were given in. For example,
in many cases, the variables V are given in the form of
a matrix or tensor, and the position of each variable in
this tensor often plays a crucial role in the partitioning
function of the CSs.

3. Conditioning features: These features describe how the
variables in the scope of the constraint relate in differ-
ent ways, to capture sequence conditions that may ex-
ist in the CSs of the problem. For example, a constraint
may only apply to pairs of variables that are a certain dis-
tance away from each other in the variable tensor. Thus,
the distance between the variables in a constraint’s scope
may be included as a conditioning feature. Note that the
partitioning features can also be used to capture the se-
quence conditions, since they describe whether the vari-
ables share a certain property or not. For example, a se-
quence condition may state that the variables must not be
part of the same row in the variable matrix.

The grammar of relations, partitioning functions, and se-
quence conditions used can be considered as the inductive
bias of our method. The feature representation needs to be
able to capture the CSs existing in the problem at hand. In
our implementation, a proof-of-concept feature representa-
tion was used based on structural properties of the variables
matrix, as matrix modeling is common and beneficial in
CP (Flener et al. 2001), with no problem-specific variable
attributes.1 In more detail:
1. We used 3 relation features, describing the name of the

constraint relation and its constant values.
2. As candidate attributes for partitioning, we used the in-

dices of the variables in the dimensions of the tensor they
were given in, along with latent dimensions that may
be discovered using the problem parameters. We include
one partitioning feature for each (latent) dimension, ex-
pressing whether all variables in the constraint’s scope
share the same index in them.

3. As additional conditioning features, we used the average
difference between the variable indices in each dimen-
sion and latent dimension.
1More information regarding the feature representation used

can be found in the appendix (in the extended version).



Figure 1: GENCON: Generalizing constraint models through constraint classification, using a parameterized feature represen-
tation of constraints

From numerical to categorical features over parameters.
As the goal is to generalize beyond a single problem in-
stance, the feature representation of the constraints should
capture the characteristics of the constraints in a generic,
parameterized way. Numerical attributes of the constraints
typically are not static across instances but depend on pa-
rameters of the problem; e.g., in our running example, the
constant present in the different_day constraints de-
pends on the timeslots-per-day parameter and is not a static
value. We want the classifier to be able to capture that. In
this step of our approach, we thus replace numerical features
with categorical features over the parameters. We do so us-
ing a numerical-to-categorical parameter mapping function
σ : R → {“NaN”} ∪ PA (where PA is the list of named
parameters and their value), defined as follows:

σ(v) =

{
pi v = ui | (pi, ui) ∈ PA
“NaN” otherwise.

(2)

For any numerical feature value that corresponds to a pa-
rameter value of the problem instance, function σ replaces
the feature by the corresponding parameter’s name.

Note that, in a constraint model, it is sometimes not the
value u of parameter p that comes up directly in the features.
Instead, a trivial arithmetic adaptation of the parameter value
may be used, e.g., u− 1, u+ 1 or the multiplication of two
parameter values. To capture this, we extend the set of pa-
rameters P with these adaptations, along with the common
basic constants 0 and 1, as is also done in COUNT-CP (Ku-
mar, Kolb, and Guns 2022). For the new categorical features,
there are thus |P| + 1 categories (where P is the extended
set of parameters): one for every parameter, plus a “NaN” in
case none of the parameters match the given value. Our cat-
egorical features will thus be able to represent the constraint
in a parameterized way. Although arbitrary constants can-
not be captured this way, we make the assumption that every
constant present is related to the parameters of the problem.

Also note that, when parameterizing the feature represen-
tation of a constraint, a single numerical feature value might
correspond to multiple parameter values. When this occurs,
one example is included in the dataset for each possible
matching. Although this could add noise to the dataset, due
to examples with a wrong parameter replacing the numeri-
cal feature, it ensures that the correct feature representations
will definitely be included.

Extracting Constraint Specifications
Decision rules continue to be popular due to their in-
terpretability, with methods existing to extract rules from
various classes of classifiers (Barakat and Bradley 2010;
Iqbal 2012), in addition to traditional rule-based classifi-
cation methods. The goal is to derive a set of rules R =
{r1, r2, . . . , rk} that represent the classification function.
Each rule ri specifies some conditions Qi on a subset of
features, and a class label yi, such that Qi ⇒ yi.

In our context, rules that lead to a positive classification
define the conditions for a constraint to be part of the tar-
get problem. Thus, these conditions can be converted into
the CSs of the problem. The extracted CSs can then be used
to generate the constraints of any given target instance. We
now propose a method for extracting the interpretable CSs
of the problem from such a set of learned decision rules. Our
approach focuses on the positive-classification rules, iterat-
ing over their conditions to identify the relation, partitioning
function, and sequence conditions of each CS.

Our method is shown in more detail in Algorithm 1. First,
the rules leading to a positive classification are extracted in
Rpos (line 1). Then, for each rule r ∈ Rpos (line 3), a CS
is constructed. The elements of the CS are first initialized
(lines 5-7), and then the algorithm iterates over the rule con-
ditions in Q to construct the CS (line 8) as follows:
1. Relation Extraction: Identify conditions in Q related to

relation features (RF) (lines 10-11). These conditions de-
termine which relations from Γ are used, and which con-
stants are used in these relations, if any.

2. Partitioning Function (lines 12-14): Identify the parti-
tioning function of the CS using conditions in Q involv-
ing partitioning features (PF). Use conditions that re-
quire certain characteristics to be equal in the constraint’s
variables, and thus can be used to partition the variables
based on them.

3. Sequence Conditions (lines 15-18): Sequence condi-
tions can be derived from both partitioning features and
sequence condition features (SF). More concretely, if a
condition Q involves a partitioning feature, and requires
certain characteristics to not be equal, then this require-
ment is added to the sequence condition (lines 15-16). If
a condition in Q involves a sequence condition feature, it
is also added to the sequence conditions (lines 17-18).

Finally, if more than one relation is allowed by the rule’s
conditions, we create one CS for each, retaining the parti-
tioning function and sequence conditions (lines 19-21).



Algorithm 1: Extracting Constraint Specifications

Input: R: a set of decision rules, Γ: a set of relations, RF :
a set of relation features, PF : a set of partitioning fea-
tures, SF : a set of sequence condition features

Output: CS: a set of constraint specifications
1: Rpos ← {r ∈ R | y(r) = True}
2: CS ← ∅
3: for all r ∈ Rpos do
4: Q← conditions(r)
5: rel← Γ
6: partition← ∅
7: seq cond← ∅
8: for all q ∈ Q do
9: f ← feature(q)

10: if f ∈ RF then
11: rel← rel ∩ {γ ∈ Γ | q is satisfied by γ}
12: else if f ∈ PF then
13: if value(q) = True then
14: partition← partition ∪ {q}
15: else
16: seq cond← seq cond ∪ {q}
17: else if f ∈ SF then
18: seq cond← seq cond ∪ {q}
19: for all γ ∈ rel do
20: cs← create CS(γ, partition, seq cond)
21: CS ← CS ∪ {cs}
22: return CS

Example 3. Recall the exam timetabling problem from Ex-
ample 1, which has two requirements: “all courses must be
scheduled in different timeslots” and “exams of courses from
the same semester must be scheduled on different days”.

In Figure 2, we can see a decision tree learned to classify
constraints in this problem, using our parameterized feature
representation. Recall that parameter t represents the times-
lots per day. We can extract the following decision rules from
this tree by following the paths from the root to the leaves:
r1: Relation == "different_day"
& Dim0_same == "false"
then 0
r2: Relation == "different_day"
& Dim0_same == "true"
& Constant_parameter != "t"
then 0
r3: Relation == "different_day"
& Dim0_same == "true"
& Constant_parameter == "t"
then 1
r4: Relation == "!=" then 1

Rules r3, r4 are the positive-classification rules, which
will be used to construct our CSs. The two CSs that will be
extracted, along with their generators, are:
1. CS1: Relation: “different day(t)”, Partitioning attribute:

dim0 same, Sequence conditions: ∅
Foreach row ∈ all_rows:

Foreach scope ∈ all_pairs(row):
c ← (rel(c) = "different_day(t)",

var(c) = scope)

Relation

Relation == ”different day”

Dim0 same == ”false”
class: 0 Dim0 same == ”true”

Constant parameter != ”t”
class: 0

Constant parameter == ”t”
class: 1

Relation == ”!=”
class: 1

Figure 2: Decision Tree for Exam Timetabling in Example 3

2. CS2: Relation: “!=”, Partitioning attribute(s): None, Se-
quence conditions: ∅

Foreach scope ∈ all_pairs(V):
c ← (rel(c) = "!=", var(c) = scope)

Generate-and-Test
To enable the use of our method even when decision rules
cannot be extracted, we now present a generate-and-test ap-
proach that can be used with any classifier, as an alternative
to extracting the CSs from interpretable classifiers.

The intuition of this approach is the following: Even if we
cannot extract the CSs from the learned classifier fθ explic-
itly, we know that it implicitly represents them. Thus, we can
use the classifier itself to recognize the true constraints for
any problem instance. Our generate-and-test approach does
so by generating a set of candidate constraints BT for the tar-
get problem T , using the language Γ as described above. For
relations with constants, the setP provides candidate values.
To decide which of the constraints from BT to use, each of
them is featurized, and the function fθ predicts whether it
should be part of the model. We keep all constraints with
positive classification:

CT = {c | c ∈ BT ∧ fθ(ϕσ(c,P)) = True} (3)

Experimental Evaluation
We now experimentally evaluate GENCON, using ground
CSPs of different instances on a variety of benchmarks.
We evaluate our approach both when the given sets of con-
straints are correct and when noise exists. Noisy CSPs can
result when the ground CSPs were themselves acquired us-
ing passive CA, on a noisy dataset of solutions and non-
solutions, or on a dataset containing too few examples. We
recognize two different types of noise in our setting:

1. False positive (FP) noise, where the input set of con-
straints is not sound, also including wrong constraints.

2. False negative (FN) noise, where the input set of con-
straints is not complete, missing some true constraints.

We aim to answer the following experiment questions:



(Q1) To what extent does GENCON effectively generalize
ground CSPs?

(Q2) What is GENCON’s performance when the input set
of constraints also includes wrong constraints?

(Q3) What is GENCON’s performance when the input set
of constraints does not include all true constraints?

Experimental Setup
Benchmarks. We focused on using benchmarks that have
different constraint specifications so that our method is
evaluated in distinct cases. Namely, we used the follow-
ing benchmarks that are commonly used in CA: Sudoku,
Golomb, Exam Timetabling (ET) and Nurse Rostering
(NR). In each benchmark, we used 10 instances with dif-
ferent parameters.2 We employed a challenging variant of
leave-one-out cross-validation, referred to as leave-one-in
cross-validation: for each fold, we used just a single instance
for training and the remaining nine instances for testing. We
present the average results of this process.

Metrics. We evaluate each method by identifying the cor-
rectly generated constraints and the number of constraints
missing from the model of the target instance(s). Note that,
for a constraint to have a positive ground truth label, our
evaluation did not only check if a constraint is part of the
ground truth model but also if it is logically implied by it.
Based on that, we define as True Positives (TP) the correctly
identified constraints, as False Positives (FP) the incorrectly
identified constraints, and as False Negatives (FN) the miss-
ing constraints. Using the defined concepts, our evaluation
is based on the following metrics that are common in ML:

• Precision (Pr): It measures the accuracy of the identified
constraints in the target instance.A high precision score
signifies a low rate of false positives. When the precision
score is 100%, the predicted set of constraints is sound.

• Recall (Re): It measures the method’s ability to identify
all relevant constraints.A high recall score indicates a low
rate of false negatives. When the recall score is 100%, the
predicted set of constraints is complete.

Comparison. To obtain the CSs of the problem from ex-
tracted decision rules, we used Decision trees (DT) and the
rule-based classifier CN2. Then, these CSs were used to gen-
erate the ground CSPs of the target instances. We also evalu-
ated the generate-and-test approach with a variety of classi-
fiers: Random Forests (RF), Naive Bayes (NB), Multi-layer
Perceptron (MLP), and K-Nearest Neighbours (KNN). We
used CN2, DT, RF, and NB with their default parameters
and tuned the most important hyperparameters for MLP and
KNN2. We compare our method with the generalization ap-
proach used in COUNT-CP (Kumar, Kolb, and Guns 2022).

For the experiments that evaluate the impact of noise, we
changed the ground CSPs for the input instances, injecting
noisy constraints in them. We evaluated our method on 4 dif-
ferent levels of noise (5%, 10%, 15%, 20%) w.r.t. the origi-
nal size of the input set of constraints CA. To inject FP noise,
we randomly add the respective percentage of constraints

2Details can be found in the appendix.

(a) Precision

(b) Recall

Figure 3: Results comparing our method (using different
classifiers) with COUNT-CP generalization

from the set constraints C−
A in CA, while for FN noise, we

directly remove constraints randomly from CA.
Implementation and hardware All experiments were

conducted on a system with an Intel(R) Core(TM) i7-2600
CPU, 3.40GHz clock speed, with 16 GB of RAM. All meth-
ods and benchmarks were implemented in Python. We used
the CPMpy library (Guns 2019) for constraint modeling,
and the Scikit-Learn library (Pedregosa et al. 2011) for
the ML classifiers, except CN2, for which the Orange li-
brary (Demšar et al. 2013) was used. For COUNT-CP, in the
available implementation3 the generalization is mixed with
learning, so we re-implemented it stand-alone.

Results
Q1: To what extent does GENCON effectively generalize
ground CSPs? Figure 3 shows the results of GENCON
using different classifiers, and of COUNT-CP’s generaliza-
tion. Both the extraction of CSs for DT and CN2, as well as
generate-and-test for the other classifiers, achieve high pre-
cision and recall in all benchmarks. The only exception is
NB, which gets lower recall in ET and NR, and significantly
lower precision in Sudoku. We believe that this is due to
its feature independency assumption, which makes it hard
for the classifier to recognise the relationship of the differ-
ent features in the CSs. The benchmark that turned out to be
the most difficult for all methods was ET, with the difficulty
being recognizing the parameter of the CS regarding the
different_day constraints. The problem occurred in in-
stances with many parameters with the same value, with all

3https://github.com/ML-KULeuven/COUNT-CP



(a) Precision with FP noise (b) Recall with FP noise (c) Precision with FN noise (d) Recall with FN noise

Figure 4: (a) and (b) Results with the presence of FP noise in the input constraint model, (c) and (d) Results with the presence
of FN noise in the input constraint model (best viewed in color).

of them being recognized as part of the different_day
CS. This led to the generation of additional constraints in the
target instances, lowering the precision.

COUNT-CP also demonstrates good performance in gen-
eral. Besides ET, where it presents the same issue as our
method, it achieves 100% precision in the other three bench-
marks. However, its main drawback is illustrated in the re-
call results, as it was not able to capture all CSs in NR and
Sudoku. In NR, the CSs regarding consecutive shifts cannot
be captured, as COUNT-CP does not include sequence con-
ditions in its generalization approach, and only searches for
patterns that apply in all sequences of predefined partitions.
In Sudoku, the block partitions are not automatically found.

COUNT-CP includes an option to manually give custom
partitions as input, and in this case, its recall in Sudoku is in-
creased to 100%. Notably, when we include special features
for these custom partitions in our approach, the results with
all classifiers also increase to 100%.

Q2: What is the impact of FP noise in the performance of
GENCON? Due to space limitations, we present the aver-
age results over all benchmarks for each method.4 The pre-
cision results are shown in Figure 4a, while the recall results
are shown in Figure 4b.

We can observe that the CN2 classifier (and thus also
the CSs extracted from it) and NB are the most sensitive
to false positives, presenting increasingly worse precision
scores when noise increases. This is because the learning ap-
proach of CN2 is not very tolerant to this kind of noise, over-
fitting in many cases to non-existing patterns. When any of
the other classifiers are used in GENCON, their performance
remains about as good as in the noiseless setting. The classi-
fiers that already presented high scores in Q1 stay around
95-100%, even when the noise percentage reaches 20%.
Similarly, the COUNT-CP generalization approach keeps the
same performance as in the original results without noise.
That is because it only searches for specific partition patterns
and symbolic expression bounds, and thus the randomly in-
serted constraints are directly disregarded.

Q3: What is the impact of FN noise on the performance
of GENCON? As in Q2, we present the average results

4Detailed results per benchmark can be found in the appendix.

over all benchmarks. The precision results are shown in Fig-
ure 4c, while the recall results are shown in Figure 4d.

We can observe that KNN is the most sensitive to FN
noise, with worsening recall when more noise is added,
meaning that it struggles to find all the constraints of the
target instance. For CN2, the lack of noise tolerance shows
up again, as in Q2, though precision and recall stay above
80%. When any of the other classifiers is used, results re-
main good, even for up to 20% noise. These results demon-
strate the ability of our classification-based approach to gen-
eralize even in the presence of high percentages of noise.

On the other hand, in the presence of false negatives, the
COUNT-CP generalization fails to detect any patterns and
does not find any constraints in the target instances, as it
searches for partitions in which all sequences of variables
share a given constraint. Importantly, COUNT-CP fails to
generalize, even when only 5% noise is added.

Conclusions
CP models are typically defined by parameterized specifica-
tions, rather than a flat list of ground constraints. However,
most CA methods focus on learning a single ground CSP
for a specific instance. Our work addresses this limitation
by generalizing ground CSPs to parameterized models using
a constraint-level classification approach named GENCON.
We showed how interpretable CSs can be derived from de-
cision rules, and introduced a generate-and-test method for
non-interpretable classifiers. Our evaluation indicates that
GENCON achieves high accuracy and robustness, even for
high levels of noise, highlighting the potential of ML-based
techniques for generalizing constraint models and making
CA more robust. We recommend using decision trees as the
classifier of choice, as they facilitate the extraction of inter-
pretable CSs while presenting strong performance.

Promising avenues for future work include exploring ac-
tive learning to enhance generalization; and using gener-
alization during interactive constraint learning to reduce
queries, leveraging also the noise robustness demonstrated
here. Additionally, GENCON can be applied during passive
CA, enabling the learning of constraint models from a lim-
ited amount of solutions and non-solutions across various
instances, a scenario common in real-world applications.
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