Learning to Learn in Interactive Constraint Acquisition

Our contribution:

First time using statistical ML to guide interactive CA, learning to learn during the acquisition process

Using statistical ML to learn patterns in constraints

Statistical ML learns the structure implicitly, query-based learning makes it explicit

Benchmarks:Sudoku 9x9	# of G 8000	ueries	Max T (secs)	Statistical N	IL can detect p	attern
	Guiding query generation using different classifiers					
Evaluation		Results		Conclusions		
			S	teps	14 Var_dim _i _spread	Float
to all queries of CA.	Learn violated This is constraints	Sa 2- Find a minimal conflicting scope	Find the constraint O	bjective function to use in these 2	13 Var_dim _i _avg	Float
				Ve showed how to adjust the	12 Var_dim _i _min	Int

Feature Representation of Constraints

ID	Name	Туре
1	Relation	Categ.
2	Arity	Int
3	Has_constant	Bool
4	Constant	Int
5	Var_name_same	Bool
6	Var_Ndims_same	Bool
7	Var_Ndims_max	Int
8	Var_Ndims_min	Int
9	Var_dim _i _has	Bool
10	Var_dim _i _same	Bool
11	Var_dim _i _max	Int
12	Var_dim _i _min	Int
13	Var_dim _i _avg	Float
14	Var_dim _i _spread	Float

- Exam Timetabling
- Nurse Rostering

Classifiers:

- Random Forests (RF)
- Gaussian Naïve Bayes (GNB)
- Multilayer Perceptron (MLP)
- Support Vector Machines (SVM)
- A frequentist counting method (Count)

Metrics used:

- of Queries: Total number of queries until convergence
- Max (secs): The maximum • time of the user in waiting seconds

Total number of queries reduced up to 70%

• Guiding all layers using RF

in (incomplete) constraint models and can be used successfully to generalize and guide Interactive CA towards better queries.

 Total number of queries reduced up to 70%

This research received funding from

• the European Research Council (ERC) under the EU Horizon 2020 research and innovation programme (Grant No 101002802, CHAT-Opt)

• the EU Horizon 2020 research and innovation programme (Grant No 101070149, project Tuples).