
Learning to Learn in Interactive Constraint Acquisition

• Constraint programming (CP) 
• Solve combinatorial problems in various 

domains

• Main Challenge:
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• Statistical ML can detect patterns 

in (incomplete) constraint 

models and can be used 

successfully to generalize and 

guide Interactive CA towards 

better queries.

• Total number of queries reduced 

up to 70%
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Benchmarks:

• Sudoku 9x9

• Exam Timetabling

• Nurse Rostering

Contribution

Interactive Constraint Acquisition Template

𝑒 = argmax
𝑒 ∈𝑆𝑜𝑙(𝐶𝐿 ٿ 𝐵)

෍

𝑐∈𝐵

𝑒 ∉ 𝑠𝑜𝑙(𝑐) ⋅ (1 − 𝛤 ⋅ 𝑂(𝑐) )

Objective function:

O(c)
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• Model + Solve paradigm • Interactive CA

Background

Getting as input a set of candidate constraints B, find a set of 

constraints 𝐶𝐿 ⊆ 𝐵 𝑠. 𝑡. 𝑠𝑜𝑙(𝐶𝐿) = 𝑠𝑜𝑙(𝐶𝑇), with 𝐶𝑇 being the 

target constraint set

Guiding Query Generation
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Negative examples Positive examples

Motivation

• Use of Oracle O(C) → True if P(c ∈ 𝐶𝑇| 𝑐 ∈ 𝐵)

is high enough

Using statistical ML to learn patterns in constraints

ID Name Type

1 Relation Categ.

2 Arity Int

3 Has_constant Bool

4 Constant Int

5 Var_name_same Bool

6 Var_Ndims_same Bool

7 Var_Ndims_max Int

8 Var_Ndims_min Int

9 Var_dimi_has Bool

10 Var_dimi_same Bool

11 Var_dimi_max Int

12 Var_dimi_min Int

13 Var_dimi_avg Float

14 Var_dimi_spread Float

First time using statistical ML to guide interactive CA, learning to learn during the acquisition process
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• Guiding query generation using different classifiers

• Guiding all layers using RF

Classifiers:

• Random Forests (RF)

• Gaussian Naïve Bayes (GNB)

• Multilayer Perceptron (MLP)

• Support Vector Machines (SVM)

• A frequentist counting method (Count)

Adapting Candidate Elimination

Using a set of candidate constraints: B = { 𝑥1 = 𝑥2, 𝑥1 ≠ 𝑥3, 𝑥3 ≠ 𝑥5, 𝑥1 > 𝑥2 … }

Better probabilistic estimate P(c) leads 

to better generated queries

Statistical ML learns the structure implicitly, query-based learning makes it explicit
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Using probabilistic classification to 

predict P(c) in the oracle

Feature Representation of Constraints

We also extended guidance 

to all queries of CA:
Learn violated 

constraints

Find a minimal 

conflicting scope

Find the 

constraint 
This is a 2-

step process

…

Solution

Model

modelling

• Constraint Acquisition (CA)

Results

We showed how to adjust the 

objective function to use in these 2 

steps

Our contribution:

Metrics used:

• # of Queries: Total number of

queries until convergence

• Max T (secs): The maximum

waiting time of the user in

seconds

Total number of queries reduced up

to 70%
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