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Motivation
» Constraint programming (CP) .« Model + Solve paradigm * Interactive CA * Main Challenge:
« Solve combinatorial problems in various

domains
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| | | o | ~ Our contribution: | -
First time using statistical ML to guide interactive CA, learning to learn during the acquisition process
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Objective function:

constraints C; € B s.t. sol(C;) = sol(Cy), with C; being the e €Sol(CL A B) &= to better generated queries

target constraint set

- Using statistical ML to learn patterns in constraints Contribution
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Feature Representation of Constraints
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Using probabilistic classification to
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Statistical ML learns the structure implicitly, query-based learning makes it explicit
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Evaluation Results Conclusions

« Guiding query generation using different classifiers
Benchmarks:

e Sudoku 9x9
« Exam Timetabling
* Nurse Rostering

# of Queries Max T (secs)

» Statistical ML can detect patterns
In (incomplete) constraint

3 models and can be used
Classifiers: _
. Random Forests (RF) - - - successfully to generalize and
« Gaussian Naive Bayes (GNB) Sudoku Exam_TT NR Sudoku Exam _TT NR . -
« Multilayer Perceptron (MLP) Base Count "GNB RF MLP mSVM Base Count "\GNB RF MLP mSVM g Ul d e InteraCt|Ve CA ’[Owal’dS
e Support Vector Machines (SVM) o | .
. A frequentist counting method (Count) * Guiding all layers using RF better gueries.
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